当前位置:首页 > 最新资讯 > 行业资讯

利用人工智能对文本内容进行自动摘要

随着互联网上各种UGC越来越多,各种原创性的长文本内容也不断地涌现出来。例如,在人工智能领域的三大顶会之一的ICML,许多论文的长度都达到了二三十页。因此,如何快速的从长文本中提取出有用的信息,成为困扰许多包括科研人员在内的互联网网民的难题。

在 2023 年结束的人工智能领域顶会 AAAI 2023 上,来自中国浙江大学的研究团队,发表了一篇题为 Document Summarization Based on Data Reconstruction 的论文。该篇论文提出了 DSDR 算法,描述了如何利用贪心算法进行文本摘要提取的方法。

所谓的文本自动摘要问题,本质上就是从原始的长文本中抽取一个文本的子集合,使得利用这个子集合的线性组合能尽可能的恢复出原始文本。我们按照如下方式定义文本自动摘要问题:

其中, f 是线性组合摘要句子之后的转换函数。X 是摘要生成的句子,a 是线性组合的系数,而  v 是原始文本,也就是输入数据。

首先,f 可以是线性组合,也就是:

因此,文本自动摘要问题转换成为了下述问题:

上述损失函数公式,等价于下面的公式:

利用贪心算法,我们设计了如下损失函数:

整个算法的伪代码流程如下所示:

在上面介绍的算法中,线性组合的系数 a 有可能是负数,为了保证 a 非负,我们重构了算法的损失函数:

经过重新设计之后,算法的伪代码如下:

通过对比实验,我们发现新设计的算法,取得了优异的实验结果:

文本自动摘要,对于阅读长篇幅的文本,比如博士毕业论文、咨询报告、审计报告等内容,非常有帮助。对于赶时间的当代人来说,文本自动摘要无疑是随身办公的文书利器。希望通过本文,广大的互联网从业者能够有所收获。

猜你喜欢

微信公众号

微信公众号